首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   79篇
  2023年   3篇
  2022年   7篇
  2021年   29篇
  2020年   16篇
  2019年   14篇
  2018年   23篇
  2017年   20篇
  2016年   28篇
  2015年   57篇
  2014年   56篇
  2013年   70篇
  2012年   75篇
  2011年   92篇
  2010年   43篇
  2009年   44篇
  2008年   62篇
  2007年   75篇
  2006年   49篇
  2005年   46篇
  2004年   46篇
  2003年   33篇
  2002年   47篇
  2001年   9篇
  2000年   10篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   9篇
  1992年   6篇
  1991年   7篇
  1990年   10篇
  1989年   8篇
  1988年   3篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1977年   7篇
  1976年   4篇
  1974年   4篇
  1973年   4篇
  1968年   3篇
  1892年   3篇
排序方式: 共有1157条查询结果,搜索用时 125 毫秒
991.
Deficiency of carbohydrate sulfotransferase 3 (CHST3; also known as chondroitin-6-sulfotransferase) has been reported in a single kindred so far and in association with a phenotype of severe chondrodysplasia with progressive spinal involvement. We report eight CHST3 mutations in six unrelated individuals who presented at birth with congenital joint dislocations. These patients had been given a diagnosis of either Larsen syndrome (three individuals) or humero-spinal dysostosis (three individuals), and their clinical features included congenital dislocation of the knees, elbow joint dysplasia with subluxation and limited extension, hip dysplasia or dislocation, clubfoot, short stature, and kyphoscoliosis developing in late childhood. Analysis of chondroitin sulfate proteoglycans in dermal fibroblasts showed markedly decreased 6-O-sulfation but enhanced 4-O-sulfation, confirming functional impairment of CHST3 and distinguishing them from diastrophic dysplasia sulphate transporter (DTDST)-deficient cells. These observations provide a molecular basis for recessive Larsen syndrome and indicate that recessive Larsen syndrome, humero-spinal dysostosis, and spondyloepiphyseal dysplasia Omani type form a phenotypic spectrum.  相似文献   
992.
A 149-amino acid protein designated Cg10062 is encoded by a gene from Corynebacterium glutamicum. The physiological function of Cg10062 is unknown, and the gene encoding this protein has no obvious genomic context. Sequence analysis links Cg10062 to the cis-3-chloroacrylic acid dehalogenase ( cis-CaaD) family, one of the five known families of the tautomerase superfamily. The characterized tautomerase superfamily members have two distinctive characteristics: a beta-alpha-beta structure motif and a catalytic amino-terminal proline. Pro-1 is present in the Cg10062 amino acid sequence along with His-28, Arg-70, Arg-73, Tyr-103, and Glu-114, all of which have been implicated as critical residues for cis-CaaD activity. The gene for Cg10062 has been cloned and the protein overproduced, purified, and subjected to kinetic and mechanistic characterization. Like cis-CaaD, Cg10062 functions as a hydratase: it converts 2-oxo-3-pentynoate to acetopyruvate and processes 3-bromopropiolate to a species that inactivates the enzyme by acylation of Pro-1. Kinetic and (1)H NMR spectroscopic studies also show that Cg10062 processes both isomers of 3-chloroacrylic acid at low levels with a clear preference for the cis isomer. Pro-1 is critical for the dehalogenase and hydratase activities because the P1A mutant no longer catalyzes either reaction. The presence of the six key catalytic residues and the hydratase activity coupled with the absence of an efficient cis-CaaD activity and the lack of isomer specificity implicate factors beyond this core set of residues in cis-CaaD catalysis and specificity. This work sets the stage for in-depth mechanistic and structural studies of Cg10062, which could identify the additional features necessary for a fully active and highly specific cis-CaaD. Such results will also shed light on how cis-CaaD emerged in the tautomerase superfamily because Cg10062 could be characteristic of an intermediate along the evolutionary pathway for this dehalogenase.  相似文献   
993.
Thioredoxin reductases (TrxRs) regulate the intracellular redox environment by using NADPH to provide reducing equivalents for thioredoxins (Trxs). Here we present the cloning and biochemical characterization of a putative TrxR (Ta0984) and a putative Trx (Ta0866) from Thermoplasma acidophilum. Our data identify Ta0866 as a Trx through its capacity to reduce insulin and be reduced by Escherichia coli TrxR in a NADPH-dependent manner. Our data also establish Ta0984 as a TrxR due to its ability to reduce T. acidophilum Trx ( taTrx), although not in a NADPH- or NADH-dependent manner. To explore the apparent inability of taTrxR to use NADPH or NADH as a reductant, we carried out a complete electrochemical characterization, which suggests that redox potential is not the source of this nonreactivity [Hamill et al. (2008) Biochemistry 47, 9738-9746]. Turning to crystallographic analysis, a 2.35 A resolution structure of taTrxR, also presented here, shows that despite the overall structural similarity to the well-characterized TrxR from E. coli (RMSD 1.30 A (2) for chain A), the "NADPH binding pocket" is not conserved. E. coli TrxR residues implicated in NADPH binding, H175, R176, R177, and R181, have been substituted with E185, Y186, M187, and M191 in the ta protein. Thus, we have identified a Trx and TrxR protein system from T. acidophilum for which the TrxR shares overall structural and redox properties with other TrxRs but lacks the appropriate binding motif to use the standard NADPH reductant. Our discovery of a TrxR that does not use NADPH provides a new twist in redox regulation.  相似文献   
994.
Thioredoxin reductases (TrxRs) are flavin-containing dithioloxidoreductases that couple reduction equivalents from the soluble NAD(P)H pool to the soluble protein thioredoxin (Trx). Previous crystallographic studies of the Escherichia coli enzyme ( ecTrxR) have shown that low molecular weight TrxRs can adopt two distinct conformations: the first (FO) is required for the oxidation of the flavin cofactor and the generation of reduced Trx; the second (FR) is adopted for the reduction of the flavin by NAD(P)H. Here, protein electrochemistry has been used to interrogate the equilibrium between the oxidized and reduced conformations of the ecTrxR and a novel, low molecular weight TrxR from the thermophilic archaeon Thermoplasma acidophilum ( taTrxR) that is characterized structurally and biochemically in the accompanying paper [Hernandez et al. (2008) Biochemistry 47, 9728-9737]. A reversible electrochemical response is observed that reveals a dynamic behavior dependent upon the temperature of the experiment. At low temperatures (283 K) a broad, quasi-reversible electrochemical envelope is observed centered at a value of approximately -300 mV and displaying a peak width of over 150 mV. The voltammetric response sharpens dramatically as the temperature increases, becoming much more reversible (as determined by peak separation and peak width). The overall potential and shape of the voltammetric data indicate that the flavin (FAD/FADH 2) and disulfide/dithiol couples are very close in thermodynamic potentials, and the data are interpreted in terms of the model of two-state conformational change between flavin reducing (FR) and flavin oxidizing (FO) states, where the difference in potential for the flavin and disulfide cofactors must be within 40 mV of one another. In this model, the low temperature peak broadening is interpreted as an indication of a heterogeneous population of TrxR conformations that exist at low temperature; at higher temperatures, FO and FR conformers can rapidly interconvert, and voltammetry reports upon an average potential of the conformations.  相似文献   
995.
Islet Neogenesis Associated Protein (INGAP) increases pancreatic beta-cell mass and potentiates glucose-induced insulin secretion. Here, we investigated the effects of the pentadecapeptide INGAP-PP in adult cultured rat islets upon the expression of proteins constitutive of the K(+)(ATP) channel, Ca(2+) handling, and insulin secretion. The islets were cultured in RPMI medium with or without INGAP-PP for four days. Thereafter, gene (RT-PCR) and protein expression (Western blotting) of Foxa2, SUR1 and Kir6.2, cytoplasmic Ca(2+) ([Ca(2+)](i)), static and dynamic insulin secretion, and (86)Rb efflux were measured. INGAP-PP increased the expression levels of Kir6.2, SUR1 and Foxa2 genes, and SUR1 and Foxa2 proteins. INGAP-PP cultured islets released significantly more insulin in response to 40 mM KCl and 100 muM tolbutamide. INGAP-PP shifted to the left the dose-response curve of insulin secretion to increasing concentrations of glucose (EC(50) of 10.0+/-0.4 vs. 13.7+/-1.5 mM glucose of the controls). It also increased the first phase of insulin secretion elicited by either 22.2 mM glucose or 100 microM tolbutamide and accelerated the velocity of glucose-induced reduction of (86)Rb efflux in perifused islets. These effects were accompanied by a significant increase in [Ca(2+)](i) and the maintenance of a considerable degree of [Ca(2+)](i) oscillations. These results confirm that the enhancing effect of INGAP-PP upon insulin release, elicited by different secretagogues, is due to an improvement of the secretory function in cultured islets. Such improvement is due, at least partly, to an increased K(+)(ATP) channel protein expression and/or changing in the kinetic properties of these channels and augmented [Ca(2+)](i) response. Accordingly, INGAP-PP could potentially be used to maintain the functional integrity of cultured islets and eventually, for the prevention and treatment of diabetes.  相似文献   
996.
Calmodulin (CaM) and troponin C (TnC) are the most similar members of EF-hand family and show few differences in the primary structure. Here, we use mutants of troponin that mimic calmodulin and changes in temperature to investigate the factors that determine their specificity as regulatory proteins. Using a double mutant of troponin that resembles calmodulin in lacking both the N-terminal helix and KGK(91-93) we observe a small difference from troponin in binding to the erythrocyte Ca(2+)-ATPase, and an improvement in enzyme activation. A triple mutant, where in addition, the residues 88-90 are replaced with the corresponding sequence from calmodulin is equivalent to calmodulin in maximal activation, and it restores protein ability to increase Ca(2+) affinity for the enzyme. However, this mutant also binds less tightly (1/100) than calmodulin. Remarkably, a decrease in temperature has a more marked effect in protein binding than either mutation, reducing the difference in affinities to 18-fold, but without any improvement in their ability to increase Ca(2+) affinity for the enzyme. Spectroscopic analysis of hydrophobic domain exposure in EF-hand proteins was carried out using 8-anilino-1-naphthalenesulfonic acid (ANS). The probe shows a much higher fluorescence when bound to the complex Ca(4)-calmodulin than to Ca(4)-troponin. Decreasing the temperature exposes additional hydrophobic regions of troponin. Changing the Mg(2+) concentration does not affect their bindings to the enzyme. It is suggested that the requirements for troponin to mimic calmodulin in binding to the target enzyme, and those for activating it, are met by different regions of the protein.  相似文献   
997.
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks.  相似文献   
998.
Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol‐3‐phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long‐range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190–1211. © 2017 Wiley Periodicals, Inc.  相似文献   
999.
The qualitative screening method used to select complex I mutants in the microalga Chlamydomonas, based on reduced growth under heterotrophic conditions, is not suitable for high‐throughput screening. In order to develop a fast screening method based on measurements of chlorophyll fluorescence, we first demonstrated that complex I mutants displayed decreased photosystem II efficiency in the genetic background of a photosynthetic mutation leading to reduced formation of the electrochemical proton gradient in the chloroplast (pgrl1 mutation). In contrast, single mutants (complex I and pgrl1 mutants) could not be distinguished from the wild type by their photosystem II efficiency under the conditions tested. We next performed insertional mutagenesis on the pgrl1 mutant. Out of about 3000 hygromycin‐resistant insertional transformants, 46 had decreased photosystem II efficiency and three were complex I mutants. One of the mutants was tagged and whole genome sequencing identified the resistance cassette in NDUFAF3, a homolog of the human NDUFAF3 gene, encoding for an assembly factor involved in complex I assembly. Complemented strains showed restored complex I activity and assembly. Overall, we describe here a screening method which is fast and particularly suited for the identification of Chlamydomonas complex I mutants.  相似文献   
1000.
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP–DFO as a mitochondrial iron chelator. TPP–DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP–DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L?1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP–DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich’s ataxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号